Вопрос задан 16.06.2023 в 08:44. Предмет Математика. Спрашивает Коротков Никита.

Упражнения B А 4 45 .6 67 •57 7 с 99. Используя рисунок 65, перечислите элементы множеств: 1) (A U

B) oС; 2) (A OB) o С, 3) (A OC) (BoС); 4) An (BoС); 5) (A OB) o С; 6) (AUC)n (Bu C); 7) (A U B) o С; 8) AU(BU C); Рис. 65 9) А ОВО С. Найдите среди них равные множества и запишите соответствую- щие равенства.СРОЧНО ДО 17:00!!!!! ПОЖАЛУЙСТА!!​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Инжиев Далер.

Ответ:

1) (67,45,57)

2) (45)

3) (54,45,57)

4) (45)

5) (54,45,67,57,7)

6) (54,45,57)

7) (4,6,54,45,67,57,7,5)

8) (4,6,54,45,67,57,7,5)

9) (4,6,54,45,67,57,7,5)

Совпадают 2) и 4), а также 3) и 6), а также 7), 8) и 9).

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

It looks like you're asking for help with a specific exercise related to sets and their elements. Let's break it down step by step.

Given Sets and Operations

The exercise involves sets A, B, and C, and various operations on these sets. The operations include union (U), intersection (∩), and complement (').

Elements of the Given Sets

Let's list the elements of sets A, B, and C based on the provided information: 1) A = {4, 5, 6} 2) B = {5, 6, 7} 3) C = {5, 7, 9}

Using Diagram 65

Now, let's use the provided diagram 65 to determine the elements of the given set operations.

1) (A U B)': The complement of the union of A and B. - The complement of a set contains all the elements that are not in the original set. - From the given sets, the union of A and B is {4, 5, 6, 7}. Therefore, the complement of this union will be the set of all elements not in {4, 5, 6, 7}.

2) (A ∩ B)': The complement of the intersection of A and B. - The intersection of A and B contains the elements that are common to both sets. - From the given sets, the intersection of A and B is {5, 6}. Therefore, the complement of this intersection will be the set of all elements not in {5, 6}.

3) (A ∩ C)': The complement of the intersection of A and C. - Similar to the previous operation, we'll find the complement of the intersection of A and C.

4) A ∩ (B ∪ C): The intersection of A and the union of B and C. - This operation involves finding the common elements between set A and the union of sets B and C.

5) (A ∪ B)': The complement of the union of A and B. - Similar to the first operation, we'll find the complement of the union of A and B.

6) (A U C) ∩ (B U C): The intersection of the union of A and C with the union of B and C. - This operation involves finding the common elements between the union of A and C and the union of B and C.

7) (A U B)': The complement of the union of A and B. - Similar to the previous occurrences, we'll find the complement of the union of A and B.

8) A U (B ∩ C): The union of A and the intersection of B and C. - This operation involves combining the elements of set A with the common elements of sets B and C.

Equal Sets

Finally, we need to identify any equal sets among the results of the operations and write down the corresponding equalities.

Let's proceed with these operations and find the equal sets among them.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос