Вопрос задан 15.06.2023 в 23:21. Предмет Математика. Спрашивает Хомченко Глеб.

по течению катер прошел 150 км за 5 часов против течения его скорость была на 2 км меньше чем по

чтению несколько километров катер прошел против течения за 3 часа​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Муратова Сая.
Ответ:
150/5 = 30км/ч
3 * (30 - 2) = 84
Ответ: 84 км
Пошаговое объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given that a boat traveled 150 km in 5 hours against the current, and its speed was 2 km/h less than the speed with the current. We are also given that the boat traveled a few kilometers against the current in 3 hours. We need to find the speed of the boat in still water and the speed of the current.

Solution

Let's assume the speed of the boat in still water is x km/h and the speed of the current is y km/h.

When the boat is traveling against the current, its effective speed is reduced by the speed of the current. So, the boat's speed against the current is (x - y) km/h.

We are given that the boat traveled 150 km in 5 hours against the current. Using the formula distance = speed × time, we can write the equation:

150 = (x - y) × 5 We are also given that the boat traveled a few kilometers against the current in 3 hours. Using the same formula, we can write the equation:

distance = speed × time

Let's assume the distance traveled against the current in 3 hours is d km. So, we have:

d = (x - y) × 3 Now, we have a system of two equations with two variables. We can solve this system to find the values of x and y.

Solving the System of Equations

To solve the system of equations and we can use the method of substitution.

From equation we can express x in terms of y:

x = (d/3) + y Substituting the value of x from equation into equation we get:

150 = ((d/3) + y - y) × 5

Simplifying the equation:

150 = (d/3) × 5

Solving for d:

d = (150 × 3) / 5

d = 90

Now, we can substitute the value of d back into equation to find x:

x = (90/3) + y

x = 30 + y

So, the speed of the boat in still water is 30 + y km/h.

Conclusion

The speed of the boat in still water is 30 + y km/h, where y is the speed of the current in km/h.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос