Вопрос задан 15.06.2023 в 13:32. Предмет Математика. Спрашивает Нурбеков Нурасыл.

В колоде 36 карт, берут 4 Какого вероятность что будет: хотя бы 1 крестовая и 2 короля

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Симонова Аня.

Ответ:

00000,0001%

Пошаговое объяснение:

помойму так

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given a deck of 36 cards, and we want to find the probability of drawing at least 1 card of the suit "hearts" and 2 cards of the rank "king" when drawing 4 cards from the deck.

Solution

To find the probability, we need to calculate the number of favorable outcomes and the total number of possible outcomes.

The total number of possible outcomes is the number of ways to choose 4 cards from a deck of 36 cards, which can be calculated using the combination formula:

C(n, r) = n! / (r!(n-r)!)

where n is the total number of cards in the deck (36) and r is the number of cards drawn (4).

The number of favorable outcomes is the number of ways to choose at least 1 card of the suit "hearts" and 2 cards of the rank "king" from the deck.

Let's calculate the probability step by step:

1. Calculate the number of ways to choose at least 1 card of the suit "hearts" from the deck: - There are 9 cards of the suit "hearts" in the deck. - We can choose 1, 2, 3, or 4 cards of the suit "hearts". - We can calculate this using the formula: C(9, 1) + C(9, 2) + C(9, 3) + C(9, 4).

2. Calculate the number of ways to choose 2 cards of the rank "king" from the deck: - There are 4 cards of the rank "king" in the deck. - We need to choose 2 cards of the rank "king". - We can calculate this using the formula: C(4, 2).

3. Calculate the number of ways to choose the remaining cards from the deck: - We have already chosen the cards of the suit "hearts" and the rank "king". - We need to choose the remaining cards from the remaining deck. - We can calculate this using the formula: C(36 - 9 - 4, 4 - 1 - 2).

4. Calculate the total number of possible outcomes: - We need to choose 4 cards from the deck of 36 cards. - We can calculate this using the formula: C(36, 4).

5. Calculate the probability: - The probability is the ratio of the number of favorable outcomes to the total number of possible outcomes. - We can calculate this using the formula: favorable outcomes / total outcomes.

Let's calculate the probability using the formulas mentioned above.

Calculation

1. Calculate the number of ways to choose at least 1 card of the suit "hearts": - C(9, 1) + C(9, 2) + C(9, 3) + C(9, 4) = 9 + 36 + 84 + 126 = 255.

2. Calculate the number of ways to choose 2 cards of the rank "king": - C(4, 2) = 6.

3. Calculate the number of ways to choose the remaining cards: - C(36 - 9 - 4, 4 - 1 - 2) = C(23, 1) = 23.

4. Calculate the total number of possible outcomes: - C(36, 4) = 36! / (4!(36-4)!) = 36! / (4!32!) = (36 * 35 * 34 * 33) / (4 * 3 * 2 * 1) = 58905.

5. Calculate the probability: - Probability = favorable outcomes / total outcomes = (255 * 6 * 23) / 58905 ≈ 0.299.

Therefore, the probability of drawing at least 1 card of the suit "hearts" and 2 cards of the rank "king" when drawing 4 cards from a deck of 36 cards is approximately 0.299.

Answer

The probability of drawing at least 1 card of the suit "hearts" and 2 cards of the rank "king" when drawing 4 cards from a deck of 36 cards is approximately 0.299.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос