Вопрос задан 06.06.2023 в 16:16. Предмет Математика. Спрашивает Иванов Денис.

1537. Решите уравнения: 1) |x| = 7; 2) |2x| = 8; 1538. 3) |x + 1 = 3; 4) |x| = -5;

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
  1. |x| = 7

To solve this equation, we consider two cases:

Case 1: x is positive. In this case, the equation |x| = 7 becomes x = 7. So, x = 7 is a solution.

Case 2: x is negative. In this case, the equation |x| = 7 becomes -x = 7. Solving for x, we have x = -7. Therefore, x = -7 is also a solution.

Therefore, the solutions to the equation |x| = 7 are x = 7 and x = -7.

  1. |2x| = 8

Again, we consider two cases:

Case 1: 2x is positive. In this case, the equation |2x| = 8 becomes 2x = 8. Solving for x, we have x = 4.

Case 2: 2x is negative. In this case, the equation |2x| = 8 becomes -2x = 8. Solving for x, we have x = -4.

Therefore, the solutions to the equation |2x| = 8 are x = 4 and x = -4.

  1. |x + 1| = 3

Again, we consider two cases:

Case 1: x + 1 is positive. In this case, the equation |x + 1| = 3 becomes x + 1 = 3. Solving for x, we have x = 2.

Case 2: x + 1 is negative. In this case, the equation |x + 1| = 3 becomes -(x + 1) = 3. Solving for x, we have x = -4.

Therefore, the solutions to the equation |x + 1| = 3 are x = 2 and x = -4.

  1. |x| = -5

The absolute value of any number is always non-negative, so it cannot be equal to a negative value. Therefore, the equation |x| = -5 has no solutions.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос