
1)Объясните, какое тело называется цилиндром. Выведите формулу площади полной поверхности
цилиндра. 2)Высота конуса равна 6 см., а образующая наклонена к плоскости основания под углом в 30о. Найдите площадь сечения конуса плоскостью, проходящей через две образующие, угол между которыми равен 60о. 3)Радиус шара равен R. Найдите площадь поверхности вписанного в шар куба.

Ответы на вопрос

Цилиндр - это фигура вращения, которая получается вращением прямоугольника вокруг оси, проходящей через середины боковых сторон.
Площадь полной поверхности - это 2 основания, которые являются окружностями ( одиниковыми) и площадь развертки (прямоугольника, стороны которого: длина окружности основания и высота цилиндра).
Получаем:
площадь оснований: 2*пR2, где R2 - это радиус в квадрате.
площадь развертки: 2пR*h, где h -высота цилиндра
Складываем: 2п(R2+Rh) - площадь полной поверхности цилиндра.
2.
Образующая конуса - это отрезок, соединяющий вершину с точкой окружности (основания). Так как сечением является равнобедренный треугольник (равные стороны - это образующие) с углом в 60* при вершине.
Получаем, что так как угол при вершине = 60*, то треугольник равносторонний ( все стороны равны и все углы равны 60*) Площадь р/ст треугольника а* (3(корня из 3)/4).
Нам известна высота = 6. Из треугольника, образованного обдой из образующих и высотой ( он прямоугольный) находим чему равна образующая: а= 4 (корня из 3) см.
Подставляем в формулу площади:
4(корня из 3)*3(корня из 3) / 4 = 9 кв см.
3.
R - радиус, значит 2R - диаметр шара и он = диагонали куба, впис в этот шар.
По теореме Пифагора, примененной к сторонам квадрата и его диагонали, получаем, что 2а2=2R, откуда а2=R. Площадь поверхности куба = 6* а2 = 6*R.



2) Чтобы найти площадь сечения конуса, необходимо определить радиус и высоту этого сечения. Поскольку угол между образующими равен 60°, то угол между сечением и основанием также будет равен 60°. Радиус сечения можно определить как половину от расстояния между двумя образующими в точке сечения. Радиус сечения r = (l1 + l2)/2, где l1 и l2 - образующие, а высоту сечения можно определить по теореме Пифагора: h = (l/2)sin30° = (l/4), где l - длина сечения. Площадь сечения конуса равна S = πr².
3) При вписывании какого-либо тела в шар полезно использовать его диаметр как сторону. Сторона вписанного куба будет равна диаметру шара, следовательно, a = 2R. Площадь поверхности куба равна S' = 6a², а площадь поверхности вписанного в шар куба будет равна S = S' - 4πR². Подставляя a и упрощая, получим S = 12R²(1 − π/3).


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili