
(6x-1)(1+6x)+14<7x(2+5x)


Ответы на вопрос

6x+36x^2-1-6x+14<14x+35x^2
36x^2-35x^2-14x+13<0
x^2-14x+13<0
D=196-52=144
x1=(14+12)/2*1=26/2=13
x2=(14-12)/2*1=2/2=1
(1;13)



Let's start by expanding the left side of the inequality using the distributive property:
(6x-1)(1+6x) + 14 < 7x(2+5x)
Simplifying this expression, we get:
6x + 36x^2 - 1 - 6x + 14 < 14x + 35x^2
Combining like terms, we get:
36x^2 + 13x + 13 < 35x^2 + 14x
Subtracting 35x^2 and 14x from both sides, we get:
x^2 - x - 13 > 0
Using the quadratic formula, we can find the roots of this quadratic equation:
x = (1 ± sqrt(1 - 4(1)(-13))) / 2 x = (1 ± sqrt(53)) / 2
Since the coefficient of the x^2 term is positive, the parabola opens upwards and the inequality is true for values of x that are outside the roots of the equation. Therefore, the solution set is:
x < (1 - sqrt(53)) / 2 or x > (1 + sqrt(53)) / 2
Alternatively, we can use a sign chart to determine the solution set:
diff +------------+------------+------------+
| x^2 - x | x^2 - x | x^2 - x |
| < 0 | = 0 | > 0 |
---+------------+------------+------------+
x | x < 0 or | x = 1 | x < 1 or |
| x > 1 | | x > 0 |
---+------------+------------+------------+
+x | x < -13/12 | | x > 13/12|
---+------------+------------+------------+
The sign chart shows that the inequality is true for values of x less than -13/12 or greater than 13/12, which is equivalent to the solution set we found using the quadratic formula.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili