Вопрос задан 15.04.2021 в 12:30. Предмет Математика. Спрашивает Кувычко Богдан.

Область определения функции y=корень из х делённое на х+3

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Делідон Ілля.
X> или =0
и
x не равно -3
должно быть правильно

0 0
Отвечает Марков Феодосий.
Так как под корнем не может быть отрицательное число и в знаменателе и не может быть 0 то Д(х)=(0;+∞)
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для функции $y=\sqrt{x/(x+3)}$ область определения будет множество всех действительных чисел $x$, таких что знаменатель не равен нулю, то есть $x+3 \neq 0$:

x+30x3x+3 \neq 0 \Rightarrow x \neq -3

Таким образом, область определения функции $y=\sqrt{x/(x+3)}$ - это множество всех действительных чисел $x$, кроме $x=-3$. Формально можно записать:

Df={xR:x3}\mathrm{D}_f = \{x \in \mathbb{R} : x \neq -3\}

где $\mathrm{D}_f$ обозначает область определения функции $f(x)$.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос