Вопрос задан 26.03.2021 в 07:07. Предмет Математика. Спрашивает Чимитова Айлана.

Помогите пожалуйста ))) y=sin(6x^2+9)

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Киров Дмитрий.
По-моему здесь надо найти начальную функцию

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Конечно! Чтобы проанализировать функцию y = sin(6x^2 + 9), мы можем рассмотреть некоторые основные характеристики.

  1. Амплитуда: Для функции синуса амплитуда определяет максимальное значение функции. В данном случае амплитуда равна 1, так как sin(x) имеет максимальное значение 1 и минимальное значение -1.

  2. Период: Период функции синуса определяет, как часто функция повторяется. Период выражается формулой T = 2π/|b|, где b - коэффициент перед x. В данном случае коэффициент перед x^2 равен 6, поэтому период будет T = 2π/6 = π/3.

  3. Сдвиг по оси y: Значение 9 внутри функции sin(6x^2 + 9) приводит к сдвигу функции вверх на 9 единиц по оси y.

  4. Нули функции: Нули функции sin(6x^2 + 9) будут находиться там, где sin(6x^2 + 9) = 0. В этом случае аргумент синуса должен быть равен целым кратным π. То есть 6x^2 + 9 = nπ, где n - целое число.

Это некоторые основные характеристики функции y = sin(6x^2 + 9). Если у вас есть конкретные вопросы или что-то еще, с чем вы хотите помощи, пожалуйста, сообщите мне!

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос