
1/1·5+1/5·9+1/9·13+····+1/(4n-3)(4n+1)=


Ответы на вопрос

Решение на фотографии....





The given expression can be written as a sum of fractions with a pattern:
1/[(4n-3)(4n+1)]
To simplify this expression, we can split each fraction into partial fractions:
1/[(4n-3)(4n+1)] = [1/(4n-3)] - [1/(4n+1)]
Now, let's rewrite the given expression using these partial fractions:
1/1·5 + 1/5·9 + 1/9·13 + ... + 1/[(4n-3)(4n+1)]
= [1/1 - 1/5] + [1/5 - 1/9] + [1/9 - 1/13] + ... + [1/[(4n-3)] - 1/[(4n+1)]]
We can see that the middle terms of the numerator and denominator in each fraction cancel each other out. Therefore, we are left with only the first and last terms:
= 1 - 1/[(4n+1)]
Now, we need to determine the sum of this simplified expression. We can observe that the given expression is a telescoping series, where most of the terms cancel out. Only the first term and the last term remain:
1 - 1/[(4n+1)]
As n approaches infinity, the last term (1/[(4n+1)]) approaches zero. Thus, the sum of the given expression can be simplified to:
Sum = 1
Therefore, the sum of the series 1/1·5 + 1/5·9 + 1/9·13 + ... + 1/[(4n-3)(4n+1)] is 1.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili