
(х-4,5)/2=(-2х-3,5)/3 -2(х+5)+1=-3(х+1) |х|-15=9-5|х|.


Ответы на вопрос

3*(x - 4,5) = 2*(-2x - 3,5)
3x - 13,5 = -4x - 7
7x = 6,5
x = 13/14
Ответ: {13/14}
2) -2(x + 5) + 1 = -3(x + 1)
-2x - 10 + 1 = -3x - 3
x = 9 - 3
x = 6
Ответ: {6}
3) |x| - 15 = 9 - 5|x|
6|x| = 24
|x| = 4
x = 4
x = -4
Ответ: {-4; 4}



To solve these equations, we can follow these steps:
- Simplify both sides of the equation by distributing any constants and combining like terms.
- Move all the variables to one side of the equation and all the constants to the other side.
- If there are absolute values involved, consider both the positive and negative cases for the expression inside the absolute value bars.
Let's solve each equation:
- (х-4,5)/2=(-2х-3,5)/3
First, we can simplify the equation by cross-multiplying to get rid of the fractions:
3(х-4.5) = 2(-2х-3.5)
Simplifying further:
3х - 13.5 = -4х - 7
Bringing all the variables to one side and all the constants to the other side:
3х + 4х = -7 + 13.5
7х = 6.5
х = 0.92857 (rounded to 5 decimal places)
Therefore, the solution to the equation is х = 0.92857.
- -2(х+5)+1=-3(х+1)
First, we can simplify the equation by distributing the constants:
-2х - 10 + 1 = -3х - 3
Simplifying further:
-2х - 9 = -3х - 3
Bringing all the variables to one side and all the constants to the other side:
-2х + 3х = -3 + 9
х = 6
Therefore, the solution to the equation is х = 6.
- |х|-15=9-5|х|
We can split this equation into two cases: one where х is positive or zero, and one where х is negative.
Case 1: х ≥ 0
In this case, the absolute value is equal to х, so we can simplify the equation:
х - 15 = 9 - 5х
Bringing all the variables to one side and all the constants to the other side:
6х = 24
х = 4
Therefore, in this case, the solution to the equation is х = 4.
Case 2: х < 0
In this case, the absolute value is equal to -х, so we can simplify the equation:
-х - 15 = 9 + 5х
Bringing all the variables to one side and all the constants to the other side:
6х = -24
х = -4
Therefore, in this case, the solution to the equation is х = -4.
Therefore, the solutions to the equation are х = 4 or х = -4, depending on the sign of х.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili