Вопрос задан 18.03.2021 в 16:57. Предмет Математика. Спрашивает Гуренко Даша.

1)11x-11y= 2)y(a+b)-7(а+b)= 3)4a+4c-m(a+c)= 4)ax-ay+12x-12y

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Вертман Алиса.

Ответ:

1) 11x-11y=  11(x-y)

2) y(a+b)-7(а+b)= (a+b)(y-7)  

3) 4a+4c-m(a+c)=  4(a+c)-m(a+c)=(a+c)(4-m)

4) ax-ay+12x-12y=ax+12x-ay-12y=x(a+12)-y(a+12)=(a+12)(x-y)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the given equations, let's analyze each one individually:

  1. 11x - 11y = 2

This equation represents a linear equation with two variables, x and y. To find a specific solution, we need additional information or another equation involving x and y.

  1. y(a + b) - 7(a + b) = 0

In this equation, we have a common factor of (a + b) on both sides, which we can factor out:

(a + b)(y - 7) = 0

To solve this equation, we can set each factor equal to zero:

a + b = 0 or y - 7 = 0

From the first equation, we have a + b = 0, which means a = -b. This equation provides a relationship between the variables a and b, but it doesn't provide any information about y or x.

  1. 4a + 4c - m(a + c) = 0

Similar to the previous equation, we can factor out (a + c) from both terms:

(a + c)(4 - m) = 0

This equation gives us two possibilities:

a + c = 0 or 4 - m = 0

From the first equation, we have a + c = 0, which means a = -c. Again, this equation provides a relationship between the variables a and c, but it doesn't provide any information about m, y, or x.

  1. ax - ay + 12x - 12y = 0

We can rearrange the terms:

a(x - y) + 12(x - y) = 0

Now, we can factor out the common factor of (x - y):

(x - y)(a + 12) = 0

To solve this equation, we set each factor equal to zero:

x - y = 0 or a + 12 = 0

From the first equation, we have x - y = 0, which means x = y. This equation provides a relationship between the variables x and y.

From the second equation, we have a + 12 = 0, which means a = -12. This equation provides a specific value for the variable a.

In summary:

  • Equation 1 (11x - 11y = 2) doesn't provide enough information to determine specific values for x and y.
  • Equation 2 (y(a + b) - 7(a + b) = 0) provides a relationship between a and b, but no information about y or x.
  • Equation 3 (4a + 4c - m(a + c) = 0) provides a relationship between a and c, but no information about m, y, or x.
  • Equation 4 (ax - ay + 12x - 12y = 0) provides a relationship between x and y (x = y) and a specific value for a (a = -12).
0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос