
8^1/2 : (8^1/6 * 9^3/2)


Ответы на вопрос





To simplify the expression 8^(1/2) : (8^(1/6) * 9^(3/2)), we need to apply the rules of exponents.
Let's break it down step by step:
First, we can simplify the expression within the parentheses: 8^(1/6) * 9^(3/2).
Using the rule (a^m)^n = a^(m*n), we can rewrite it as (8^(1/6) * (9^(1/2))^3).
Simplifying further, we have (8^(1/6) * 9^(1/2))^3.
Now, we can simplify the expression within the parentheses: 8^(1/6) * 9^(1/2).
To multiply these two terms with different bases, we can rewrite it as a single term with a common base.
Since 8 = 2^3 and 9 = 3^2, we can rewrite the expression as (2^3)^(1/6) * (3^2)^(1/2).
Applying the rule (a^m)^n = a^(mn), we have 2^(3(1/6)) * 3^(2*(1/2)).
Simplifying further, we get 2^(1/2) * 3^(1).
Now we can rewrite the original expression as 8^(1/2) : (2^(1/2) * 3).
To divide terms with the same base, we subtract the exponents: 8^(1/2) / 2^(1/2) * 3.
Using the rule (a^m)/(a^n) = a^(m-n), we have 8^(1/2 - 1/2) * 3.
Simplifying, we get 8^0 * 3.
Any number raised to the power of 0 is equal to 1, so 8^0 = 1.
The expression simplifies to 1 * 3 = 3.
Therefore, 8^(1/2) : (8^(1/6) * 9^(3/2)) is equal to 3.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili