
Y''+6y'+9y=0 y(0)=2, y'(0)=1


Ответы на вопрос

Характеристическое уравнение:



The given differential equation is a second-order linear homogeneous ordinary differential equation. To solve it, we can assume a solution of the form y = e^(rt), where r is a constant to be determined.
Substituting this into the equation, we have:
y'' + 6y' + 9y = 0
(e^(rt))'' + 6(e^(rt))' + 9e^(rt) = 0
r^2e^(rt) + 6re^(rt) + 9e^(rt) = 0
Factoring out e^(rt), we get:
e^(rt)(r^2 + 6r + 9) = 0
For this equation to hold true, either e^(rt) = 0 (which is not possible) or (r^2 + 6r + 9) = 0.
The quadratic equation r^2 + 6r + 9 = 0 can be factored as (r + 3)(r + 3) = 0.
Therefore, we have a repeated root r = -3.
Since r = -3 is a repeated root, our general solution will involve multiplying by t as well. So the general solution is:
y(t) = (c1 + c2t)e^(-3t)
To find the particular solution that satisfies the initial conditions y(0) = 2 and y'(0) = 1, we can substitute these values into the general solution:
y(0) = (c1 + c2(0))e^(-3(0)) = c1 = 2
y'(0) = (c2 - 3c1)e^(-3(0)) = c2 - 3(2) = 1 c2 - 6 = 1 c2 = 7
Therefore, the particular solution that satisfies the initial conditions is:
y(t) = (2 + 7t)e^(-3t)
So the solution to the given differential equation with initial conditions y(0) = 2 and y'(0) = 1 is:
y(t) = (2 + 7t)e^(-3t)


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili