
Y=2x^4-5x^-4+3x+4 y'(1)


Ответы на вопрос




To find the derivative of the function Y = 2x^4 - 5x^(-4) + 3x + 4 and evaluate it at x = 1, we can differentiate each term separately using the power rule and sum the results.
Let's calculate the derivative step by step:
Derivative of 2x^4: The power rule states that if we have a term of the form ax^n, its derivative is given by (a * n) * x^(n - 1). Applying this rule, we get: d/dx (2x^4) = 2 * 4 * x^(4 - 1) = 8x^3.
Derivative of -5x^(-4): Applying the power rule again, we have: d/dx (-5x^(-4)) = -5 * (-4) * x^(-4 - 1) = 20x^(-5).
Derivative of 3x: The derivative of a linear term ax is simply a since the power is 1. Therefore: d/dx (3x) = 3.
Derivative of 4: The derivative of a constant term is always zero: d/dx (4) = 0.
Now, we can sum up the derivatives we obtained: Y'(x) = 8x^3 + 20x^(-5) + 3 + 0.
Finally, to evaluate Y'(1), we substitute x = 1 into the derivative expression: Y'(1) = 8(1)^3 + 20(1)^(-5) + 3 + 0 = 8(1) + 20(1) + 3 = 8 + 20 + 3 = 31.
Therefore, Y'(1) = 31.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili