Вопрос задан 09.06.2018 в 18:13. Предмет Геометрия. Спрашивает Жунсалиева Жулдызай.

угол между двумя высотами ромба,проведёнными из вершины тупого угла,равен 56 Найдите величину

острого угла ромба.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Падалко Дарья.

ABCD - ромб. B и D - его тупые углы. Из вершины D проведем высоты DM и DN к сторонам АВ и ВС соответственно. Угол МDN=56 по условию. Треугольники MDB и  NDB равны по катету и гипотенузе. Угол BDN=56/2=28, тогда угол DBN=90-28=62, следовательно, весь тупой угол ромба АВС=62*2=124. Острый угол BCD=(360-124*2)/2=56.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос