Вопрос задан 09.06.2018 в 16:41. Предмет Геометрия. Спрашивает Сметанина Елизавета.

В равнобедренном треугольнике основание равно 10 а биссектриса проведенная к основанию равна 8.

найдите медиану проведенную к боковой стороне
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Алменова Маржан.

Проведем медиану АМ к боковой стороне ВС.
В равнобедренном треугольнике биссектриса, проведенная к основанию, является и высотой и медианой.
В прямоугольном треугольнике НВС катет ВН=8 (дано), катет НС=5 (так как ВН - медиана. Тогда по Пифагору BC=√(BH²+HC²).
Или ВС=√(8²+5²)=√89. Тогда МС=√89/2, так как АМ - медиана.
В прямоугольном треугольнике ВНС косинус угла С равен отношению прилежащего катета к гипотенузе, то есть
CosC= НС/ВС или CosC=(5/√89).
По теореме косинусов в треугольнике АМС:
АМ²=АС²+МС²-2*АС*МС*CosC. Или
АМ²=100+89/4-2*10*√89/2*5/√89 или АМ²=100+89/4-50=50+89/4.
АМ=√[(50+89)/4] = 17/2=8,5 ед².
Ответ: медиана АМ=8,5 ед².


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос