
Вопрос задан 09.06.2018 в 16:41.
Предмет Геометрия.
Спрашивает Сметанина Елизавета.
В равнобедренном треугольнике основание равно 10 а биссектриса проведенная к основанию равна 8.
найдите медиану проведенную к боковой стороне

Ответы на вопрос

Отвечает Алменова Маржан.
Проведем медиану АМ к боковой стороне ВС.
В равнобедренном треугольнике биссектриса, проведенная к основанию, является и высотой и медианой.
В прямоугольном треугольнике НВС катет ВН=8 (дано), катет НС=5 (так как ВН - медиана. Тогда по Пифагору BC=√(BH²+HC²).
Или ВС=√(8²+5²)=√89. Тогда МС=√89/2, так как АМ - медиана.
В прямоугольном треугольнике ВНС косинус угла С равен отношению прилежащего катета к гипотенузе, то есть
CosC= НС/ВС или CosC=(5/√89).
По теореме косинусов в треугольнике АМС:
АМ²=АС²+МС²-2*АС*МС*CosC. Или
АМ²=100+89/4-2*10*√89/2*5/√89 или АМ²=100+89/4-50=50+89/4.
АМ=√[(50+89)/4] = 17/2=8,5 ед².
Ответ: медиана АМ=8,5 ед².



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili