Вопрос задан 01.08.2020 в 01:23. Предмет Геометрия. Спрашивает Еременко Воффка.

угол при основании равнобедренного треугольника равен альфа найдите отношение радиусов вписанной в

него и описанной  около него окружностей
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лисин Егор.

для вписанной окружности:

центр ---пересечение биссектрис углов треугольника

т.к. одна из биссектрис (проведенная к основанию (а)) ---медиана и высота, можно записать по определению тангенса: r / (a/2) = tg(альфа/2)

r = (a/2) * tg(альфа/2)

для описанной окружности: R = a / (2sin(180-2альфа)) = a / (2sin(2альфа))

r/R = a * tg(альфа/2) * 2sin(2альфа) / (2*a) = sin(2альфа)*tg(альфа/2)

можно еще немного сократить...

sin(2a) = 2sin(a)*cos(a) = 4sin(a/2)*cos(a/2)*cos(a)

r/R = 4cos(a)*(sin(a/2))^2 (здесь а---угол альфа)

 

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос