 
Вопрос задан 30.07.2020 в 03:17.
Предмет Геометрия.
Спрашивает Иванова Арина.
отрезки AB и CE пересекаются в их общей середине O . На отрезках AC и BE отмечены точки K и M так,
что AK равно BM. доказать, что OK равно OM ( помогите пожалуйста) 0
        0
         0
        0
    Ответы на вопрос
 
        Отвечает Гайсин Ринат.
                
    ΔOEB = ΔOCA по двум сторонам и углу между ними (OB=OA, OE=OC по условию; ∠EOB=∠COA как вертикальные), поэтому ∠CAO=∠EBO.
ΔOAK = ΔOBM по двум сторонам и углу между ними (OA=OB, AK=BM по условию; ∠KAO=∠MBO т.к. ∠CAO=∠EBO), поэтому OK=OM ч.т.д.

 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
	- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			