 
Вопрос задан 27.07.2020 в 04:43.
Предмет Геометрия.
Спрашивает Беделбаева Дариға.
В правильной четырехугольной пирамиде сторона основания равна m, а плоский угол при вершине равен
α. Найдите: а) высоту пирамиды; б) боковое ребро; в) угол Между боковой гранью и плоскостью основания; г) двугранный угол при боковом ребре пирамиды ОБЯЗАТЕЛЬНО РИСУНОК 0
        0
         0
        0
    Ответы на вопрос
 
        Отвечает Томилова Лиза.
                
     В ΔDSH:Sin(α/2)=DH/SD => SD=DH/Sin(α/2).
б) SD=SA=SB=SC=m/(2Sin(α/2)).
а) DO - половина диагонали квадрата.
DO=m√2/2.
SO=√(SD²-DO²)=√(m²/4Sin²(α/2)-2m²/4)=√((m²(1-2Sin²(α/2))/2Sin(α/2)=
m√Cosα/2Sin(α/2). (Так как 1-2Sin²(α/2)=Cosα по формуле).
в) <SHO =arctg(SO/OH) или <SHO=arctg(√Cosα/Sin(α/2)).
г) проведем плоскость ВDP, перпендикулярно ребру SC.
<POD=90°, по теореме о трех перпендикулярах, так как АС⊥BD.
<DPO=arctg(DO/OP).
ОР - высота из прямого угла SOC в треугольнике SOC.
ОР=SO*OC/SC.
OP=(m√Cosα/2Sin(α/2))*(m√2/2)/(m/2Sin(α/2)) = m√(2Cosα)/2.
<DPO=arctg((m√2/2)/(m√(2Cosα)/2)) = arctg(1/√Cosα).
Треугольник ВPD равнобедренный, поэтому искомый двугранный угол при боковом ребре SС равен 2*<DPO.
По формуле tg2α = 2/(ctgα-tgα):
tg(<BPD)=2/(ctg(<DPO)-tg(<DPO))=2/(√Cosα-1/√Cosα)=2√Cosα/(Cosα-1).
Ответ: а) высота SO=m√Cosα/(2Sin(α/2)).
б) боковое ребро SA=SB=SC=SD=m/2Sin(α/2).
в) угол равен arctg(√Cosα/Sin(α/2)).
г) угол равен arctg(2√Cosα/(Cosα-1)).
 
                            б) SD=SA=SB=SC=m/(2Sin(α/2)).
а) DO - половина диагонали квадрата.
DO=m√2/2.
SO=√(SD²-DO²)=√(m²/4Sin²(α/2)-2m²/4)=√((m²(1-2Sin²(α/2))/2Sin(α/2)=
m√Cosα/2Sin(α/2). (Так как 1-2Sin²(α/2)=Cosα по формуле).
в) <SHO =arctg(SO/OH) или <SHO=arctg(√Cosα/Sin(α/2)).
г) проведем плоскость ВDP, перпендикулярно ребру SC.
<POD=90°, по теореме о трех перпендикулярах, так как АС⊥BD.
<DPO=arctg(DO/OP).
ОР - высота из прямого угла SOC в треугольнике SOC.
ОР=SO*OC/SC.
OP=(m√Cosα/2Sin(α/2))*(m√2/2)/(m/2Sin(α/2)) = m√(2Cosα)/2.
<DPO=arctg((m√2/2)/(m√(2Cosα)/2)) = arctg(1/√Cosα).
Треугольник ВPD равнобедренный, поэтому искомый двугранный угол при боковом ребре SС равен 2*<DPO.
По формуле tg2α = 2/(ctgα-tgα):
tg(<BPD)=2/(ctg(<DPO)-tg(<DPO))=2/(√Cosα-1/√Cosα)=2√Cosα/(Cosα-1).
Ответ: а) высота SO=m√Cosα/(2Sin(α/2)).
б) боковое ребро SA=SB=SC=SD=m/2Sin(α/2).
в) угол равен arctg(√Cosα/Sin(α/2)).
г) угол равен arctg(2√Cosα/(Cosα-1)).

 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
	- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			