Вопрос задан 13.07.2020 в 08:04. Предмет Геометрия. Спрашивает Антонова Анастасия.

дан квадрат со стороной 2. в него вписан круг. другой круг меньшего радиуса касается данного круга

и двух соседних сторон квадрата. найдите площадь меньшего круга
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Юдаева Ульяна.
Очевидно маленьккий круг вписан в в "лунку", т.е. касается большого круга внешним образом. Радиус большого круга равен половине стороны квадрата, т.е. равен 1.Проведем общую касательную у обеим окружностям. Она отсекает прямоугольный равнобедренный треугольник, в который вписан маленький круг.   Маленький круг вписан в треугольник равнобедренный, прямоугольный , с высотой sqrt(2)-1.
Его стороны : 2-sqrt(2), 2-sqrt(2),2(sqrt(2)-1). Половина периметра:
2-sqrt(2)+sqrt(2)-1=1
Произведение  радиуса вписанной окружности на половину периметра треугольника равно площади треугольника. Поэтому:
Радиус вписанного круга  r*1=(2-sqrt(2))^2/2
r= 2-2sqrt(2)+1=3-2*sqrt(2)
r*r=9-12*sqrt(2)+8=17-12*sqrt(2)
Площадь маленького круга : pi*(17-12*sqrt(2))
Примерно; 0,0925
Примечание: sqrt - квадратный корень.








0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос