Вопрос задан 07.06.2018 в 04:56. Предмет Геометрия. Спрашивает Бильдюк Артем.

Точка M лежит на стороне BC треугольника ABC, причём BM:BC=1:4.На продолжении стороны AC за точку C

взята точка N, так что AN:CN=3:1.Прямая MN пересекает сторону AB треугольника ABC в точке K.Найдите отношение AK:KB.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Фугуев Фарит.

По теореме Менелая:
(АК/КВ)*(BM/MC)*(CN/NA)=1.
ВМ/ВС=1/4  =>  ВМ/МС = 1/3.
AN/CN=3/1 => CN/AN=1/3.
Тогда
(АК/КВ)*(1/3)*(1/3)=1.
АК/КВ = 9/1.

Доказательство  теоремы:
Проведем через точку C прямую, параллельную AB. Обозначим через Р ее точку пересечения с прямой KN.
Треугольники AKN и CPN подобны (< KAN=<PCN,
< AKN=<CPN). Следовательно, AK/CP=NA/NC  (1).
Треугольники BKM и CPM подобны (< BMK=<CMP, < BKM=<CPM). Следовательно, KB/CP=BM/MC  (2).
Из (1) СР=AK*NC/NA.
Из (2) СР=КВ*МС/ВМ.
Тогда AK*NC/NA = КВ*МС/ВМ  и
(AK*NC/NA)/(КВ*МС/ВМ)=1.  Или
(АК/КВ)*(ВМ/МС)*(NC\NA)=1.
Что и требовалось доказать.


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос