Вопрос задан 29.06.2020 в 23:23. Предмет Геометрия. Спрашивает Щукин Егор.

Основания трапеции равны 16 см и 41 см. Найти площадь этой трапеции, если боковые стороны равны 15

см и 20 см.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гасанова Анастасия.

  Обозначим вершины трапеции АВСD.  Стороны: АВ=15, ВС=16, СD=20, AD=41. Из вершины С проведем СК параллельно АВ. Тогда АВСК - параллелограмм, и СК=15 см, АК=ВС=16 см, КD=AD-AK=25 см. Отношение сторон ∆ СКD=15:20:25, т.е. 3:4:5. ⇒ ∆ КСD - так называемый египетский, он прямоугольный. Площадь ∆ КСD=KC•CD:2=150 см². Тогда его высота СН=2S:KD=300:25=12 см (она же высота трапеции АВСD). Площадь трапеции равна половине произведения высоты на сумму оснований.  S(ABCD)=CH•(BC+AD):2=12•57:2=342 см²

Подобных задач с полным и правильным ответом на сайте немало. При желании можно найти другие варианты решения.


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос