Вопрос задан 30.05.2020 в 17:47. Предмет Геометрия. Спрашивает Паринова Даша.

4.ВершинаM треугольника MNK совпадает с центром окружности радиуса\sqrt{13} [/tex] Окружность

пересекаетсторону NK треугольника в точках A и B, причём NA:AB:BK=3:1:2. Площадьтреугольника MNK равна 18. Найти высоту MC этого треугольника и длину отрезкаNC
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Петров Петя.
Да просто всё, если MC = h; AC = x; то NA = 6*x; AB = 2*x; BK = 4*x;
отсюда NK = 12*x; площадь S = 18 = 12*x*h/2; 
2*x*h = 6;
x^2 + h^2 = 13;
если сложить и вычесть, а потом извлечь корни, получается
такой вариант ответа при предположении, что x > h;
x + h = √19;
x -  h = 
√7;
или MC = h = (
√19 - √7)/2; x = (√19 + √7)/2; NC = 7*x = 7*(√19 + √7)/2;
возможен и вариант x < h; тогда
x + h = √19;
h -  x = √7;
или MC = h = (√19 + √7)/2; x = (√19 - √7)/2; NC = 7*x = 7*(√19 - √7)/2;
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос