
Вопрос задан 31.05.2018 в 13:29.
Предмет Геометрия.
Спрашивает Крахмальный Алексей.
Основанием пирамиды является ромб, сторона которого равна 4 см, острый угол равен 45°. Все грани
пирамиды с плоскостью основания образуют угол, величина которого равна 60°. Вычислите объём и площадь боковой поверхности пирамиды. Please HELP!!!

Ответы на вопрос

Отвечает Чернецева Мария.
пирамида КАВСД, К-вершина, АВСД-ромб, АВ=ВС=СД=АД=4, уголА=45, КО-высота пирамиды, О-центр вписанной окружности, проводим высоту ВТ на АД, треугольник АВТ прямоугольный, ВТ=АВ*sinA=4*sin45=4*√2/2=2√2, площадь АВСД=АД*ВТ=4*2√2=8√2, проводим радиус ОН перпендикулярный в точке касания на СД, угол КНО=60, ОН=1/2ВТ=2√2/2=√2
проводим апофему КН на СД, треугольник КНО прямоугольный, КН=ОН/cos60=√2/(1/2)=2√2, КО=КН*sin60=2√2*√3/2=√6
площадь боковая=1/2*периметр*КН=1/2*(4*4)*2√2=16√2
объем=1/3*площадьАВСД*КО=1/3*8√2*√6=16√3/3


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili