
Помогите решить задачу Основанием тетраэдра МАВС служит треугольник АВС , в котором АВ=ВС, а АС= 2а
точка О принадлежит АС МО перпендикулярно АМ и ОА=ОС. Расстояние от т.О до МВ = а --------------------------------------------------------------------------------------------------------------------------------- Вычислите угол между плоскостями АМВ и СМВ

Ответы на вопрос

Условие задачи неполное. Должно быть так:
Основанием тетраэдра МАBC служит треугольник АBC в котором AB = BC и АС = 2а√3. Точка О принадлежит АС отрезок МО перпендикулярен АС и ОА = ОС. Расстояние от точки О до прямой МB равно а. Найти угол между плоскостями (AMB) и (CMB).
Проведем ОК⊥МВ. Тогда ОК - расстояние от точки О до прямой МК и ОК = а.
ΔАВС равнобедренный, значит медиана ВО (ОА = ОС по условию) является и высотой,
ВО⊥АС,
МО⊥АС по условию, значит
АС⊥(МОВ).
МВ лежит в плоскости (МОВ), значит МВ⊥АС и ОК⊥МВ по построению, тогда МВ⊥(АКС) и значит ∠АКС - линейный угол двугранного угла между плоскостями (АМВ) и (СМВ).
АО = ОС = АС/2 = а√3, МО - медиана и высота в треугольнике МАС, значит он равнобедренный,
МА = МС.
ΔМАК = ΔМСК по гипотенузе и катету (∠АКМ = ∠СКМ = 90°, МА = МС и МК - общий катет), тогда
АК = КС, значит медиана ОК в равнобедренном треугольнике АКС является и высотой и биссектрисой, т.е. ОК⊥АС и ∠АКС = 2∠ОКС.
ΔОКС: ∠КОС = 90°,
tg∠OKC = OC / OK = a√3 / a = √3
Тогда ∠ОКС = 60°.
∠АКС = 2∠ОКС = 120°


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili