
Дано:∆АВС1.окружность,описанная около равнобедренного треугольника.2.АС=8,R=5.Найти площадь


Ответы на вопрос

Центр описанной окружности лежит на пересечении срединных перпендикуляров к сторонам треугольника, следовательно, на высоте равнобедренного ∆ АВС или на ее продолжении.
Ответ зависит от величины угла АВС. Если он тупой, центр О описанной окружности вне треугольника, если острый - внутри него.
Существует формула для радиуса описанной вокруг равнобедренного треугольника окружности. В данном ниже решении она не применялась.
а) ∆ АВС тупоугольный, центр О - вне треугольника.
Соединим О с вершинами А и С. Высота ВН еще и медиана и биссектриса ∆ АВС и принадлежит радиусу ВО ( срединному перпендикуляру).
Тогда АН=СН-4
∆ ОНС - «египетский», ⇒ ОН=3 см, ⇒ ВН, высота ∆ АВС, равна 2 см.
S ∆ АВС=ВН•AC:2=8 см²
б) ∆ АВС - остроугольный. Центр О - в плоскости треугольника.
Проведем диаметр СК и соединим К и В.
∆ СВК - прямоугольный ( угол В опирается на диаметр).
ВН в нём - высота, СК - гипотенуза, СН - проекция катета СВ на гипотенузу.
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой;
СН²=ВН•KH⇒
ВH=СН²:HK
НК=10-ВН
16=BH•(10-ВН)
BH²-10 BH+16=0 ⇒
BН₁=8 см; ВН₂=2 см ( это значение мы использовали для тупоугольного треугольника)
S ∆ АВС =8•8:2=32 cм²



Есть формула радиуса описанной окружности равнобедренного треугольника:
R=a²/√(4a²-b²) (1).
Формула площади для такого треугольника:
S=a²/(4*R) (2).
По первой находим боковую сторону, по второй - искомую площадь.
Итак, 25=(a²)²/(4a²-64). Пусть а²=х, тогда имеем: 25*(4х-64)=х².
Квадратное уравнение х²-100х+1600=0 имеет два корня (стандартное решение опускаю):
х1=80 и х2=20.
Подставляем эти значения в формулу (2):
S1=80*8/20=32.
S2=20*8/20=8.
Ответ: площадь данного нам треугольника АВС может быть
S1=8 ед² и S2=32 ед².



Площадь окружности можно найти по формуле: S = π * r^2, где S - площадь, а r - радиус окружности.
Для начала нам нужно найти радиус окружности. Для этого воспользуемся свойством описанной около треугольника окружности: радиус R описанной окружности равен половине длины основания AB.
У нас дано, что треугольник ABC - равнобедренный, то есть AC = BC. Значит, основание AB равно AC + BC = 2 * AC = 2 * 8 = 16.
Таким образом, радиус R окружности равен R = AB/2 = 16/2 = 8.
Теперь, когда у нас есть радиус окружности, мы можем найти ее площадь.
Подставляя данное значение радиуса в формулу площади окружности, получаем:
S = π * r^2 = π * 8^2 = 64π.
Окончательно, площадь окружности равна 64π.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili