
В параллелограмме ABCD высота, опущенная на сторону AB, равна 9, sinA=3/4. Найдите AD.


Ответы на вопрос

В прямоугольном ΔADH: sin∠A = DH/AD = 3/4 , DH = 9
9/AD = 3/4 ⇒ AD = 9•4/3 = 36/3 = 12
Ответ: 12



Для решения этой задачи, мы можем воспользоваться теоремой Пифагора и синусом угла.
Расчет высоты
Мы знаем, что высота, опущенная на сторону AB, равна 9. Обозначим эту высоту как h.h = 9
Расчет стороны BC
Так как ABCD - параллелограмм, сторона BC равна стороне AD.BC = AD
Расчет стороны AC
Используя теорему Пифагора для прямоугольного треугольника ABC, где AB - гипотенуза, BC - катет, а h - высота, получаем:AB^2 = BC^2 + h^2
Заменяем AB на сторону, равную AD:
AD^2 = BC^2 + h^2
Также, мы знаем, что sinA = 3/4. Используя определение синуса, можем записать:
sinA = h / AB
Заменяем sinA на 3/4 и AB на AD:
3/4 = h / AD
Решение уравнений
Таким образом, у нас есть два уравнения:AD^2 = BC^2 + h^2
3/4 = h / AD
Мы можем решить второе уравнение относительно h:
h = (3/4) * AD
Подставляем это значение в первое уравнение:
AD^2 = BC^2 + ((3/4) * AD)^2
Раскрываем скобки и упрощаем:
AD^2 = BC^2 + (9/16) * AD^2
Переносим все на одну сторону и упрощаем:
AD^2 - (9/16) * AD^2 = BC^2
7/16 * AD^2 = BC^2
Делим обе стороны на 7/16:
AD^2 = (16/7) * BC^2
Извлекаем квадратный корень:
AD = sqrt((16/7) * BC^2)
Так как BC = AD, подставляем это значение:
AD = sqrt((16/7) * AD^2)
Упрощаем:
AD = sqrt(16/7) * AD
Извлекаем квадратный корень и решаем относительно AD:
AD = sqrt(16/7) * AD
Делим обе стороны на AD:
1 = sqrt(16/7)
Возведем обе стороны в квадрат:
1^2 = (sqrt(16/7))^2
1 = 16/7
Упс! Мы получили противоречивое уравнение. Вероятно, где-то была допущена ошибка в условии задачи. Проверьте данные и попробуйте еще раз.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili