
Вопрос задан 25.05.2018 в 01:20.
Предмет Геометрия.
Спрашивает Семёнова Дарья.
В правильной четырёхугольной пирамиде угол между диагональю основания и скрещивающимся с ней
боковым ребром раввен...

Ответы на вопрос

Отвечает Згурский Макс.
В правильной четырехугольной пирамиде основанием является квадрат, а высота проецируется в его центр - точку пересечения диагоналей.
Диагональ BD и боковое ребро SC скрещивающиеся, т.к. BD⊂(ABC), SC∩(ABC) = C, C∉BD.
BD⊥AC как диагонали квадрата, значит, и ОС⊥BD. ОС - проекция SC на плоскость основания, ⇒ SC⊥BD по теореме о трех перпендикулярах.
Угол между диагональю основания и скрещивающимся с ней боковым ребром равен 90°.



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili