
Вопрос задан 22.05.2019 в 12:03.
Предмет Геометрия.
Спрашивает Семченко Кирилл.
1) из точки О,являющейся центром окружности,на хорду СЕ опущен перпендикуляр ОМ. Докажите,что точка
М является серединой хорды.2)Проведите в окружности 2 диаметра MN и DF. Докажите,что хорды MD и NF равны.3)Дано:О-центр окружности,АВ =DC Доказать: угол АОВ = углу DOC

Ответы на вопрос

Отвечает Юринский Матвей.
Если концы хорды соединить с центром окружности, получится равнобедоенный треугольник СЕО, где СО=ЕО. В равнобндренном треугольнике высота, опущенная из вершины треугольника есть медиана и биссектриса угла. Значит, точка М - середина хорды СЕ.
Треугольники МОД и FON равны, т.к. две стороны одного равны двум сторонам другого (радиусы), а углы между ними MOD и FON - вертикальные. Треугольники равны по двум сторонам и углу между ними. Значит MD=FN.
Треугольники АОВ и ДОС равны по трём сторонам. АВ=ДС по условию, две другие стороны каждого треугольника - радиусы окружности. А против равных сторон треугольников лежат равные углы. Значит углы АОВ и ДОС равны.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili