Вопрос задан 12.05.2019 в 06:31. Предмет Геометрия. Спрашивает Старцев Сергей.

Помогите пожалуйста найти высоту правильной треугольной пирамиды, у которой боковая поверхность

равна 60 см^2, а полная поверхность равна 108 см^2пожалуйста!!! мне срочно надо
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ветошкина Настя.
Площадь двух оснований
108*корень(3) - 60*корень(3) = 48*корень(3)
Площадь одного основания
а * а * синус 60 / 2 = а^2 * корень(3) / 4 = 24 * корень(3)
а^2 = 96
а = 4 * корень(6)
Периметр основания
Р = 3а = 12 * корень(6)
Высота = площадь боковой поверхности / периметр =
= 60*корень(3) / 12*корень(6) = 5*корень(2) / 2
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Finding the Height of a Regular Triangular Pyramid

To find the height of a regular triangular pyramid, we need to use the given information about the lateral surface area and the total surface area of the pyramid.

Let's denote the height of the pyramid as h.

The lateral surface area of a regular triangular pyramid is given by the formula:

Lateral Surface Area = (Perimeter of Base) * (Slant Height) / 2

Since the base of the pyramid is a regular triangle, the perimeter of the base can be calculated by multiplying the length of one side by 3.

The total surface area of a regular triangular pyramid is given by the formula:

Total Surface Area = (Area of Base) + (Lateral Surface Area)

Since the base of the pyramid is a regular triangle, the area of the base can be calculated using the formula:

Area of Base = (Side Length of Base) * (Height of Base) / 2

Now, let's solve the problem step by step.

1. Given information: - Lateral Surface Area = 60 cm^2 - Total Surface Area = 108 cm^2

2. Calculating the perimeter of the base: - Since the base is a regular triangle, the perimeter is 3 times the length of one side.

3. Calculating the area of the base: - The area of a regular triangle can be calculated using the formula mentioned above.

4. Calculating the slant height: - Using the formula for the lateral surface area, we can rearrange it to solve for the slant height.

5. Calculating the height of the pyramid: - Using the formula for the total surface area, we can rearrange it to solve for the height.

Let's calculate the height of the pyramid using the given information.

Solution:

1. Calculating the perimeter of the base: - Since the base is a regular triangle, the perimeter is 3 times the length of one side.

2. Calculating the area of the base: - The area of a regular triangle can be calculated using the formula mentioned above.

3. Calculating the slant height: - Using the formula for the lateral surface area, we can rearrange it to solve for the slant height.

4. Calculating the height of the pyramid: - Using the formula for the total surface area, we can rearrange it to solve for the height.

Based on the given information, we can calculate the height of the pyramid as follows:

1. Calculating the perimeter of the base: - Let's assume the side length of the base is s. - The perimeter of the base is given by: Perimeter = 3s.

2. Calculating the area of the base: - The area of a regular triangle can be calculated using the formula: Area = (s * h_base) / 2. - Since the base is equilateral, the height of the base (h_base) can be calculated using the formula: h_base = (s * sqrt(3)) / 2.

3. Calculating the slant height: - Using the formula for the lateral surface area, we can rearrange it to solve for the slant height (l): - Lateral Surface Area = (Perimeter of Base) * (Slant Height) / 2 - Substituting the values, we have: 60 = (3s * l) / 2. - Solving for l, we get: l = (40 / s).

4. Calculating the height of the pyramid: - Using the formula for the total surface area, we can rearrange it to solve for the height (h): - Total Surface Area = (Area of Base) + (Lateral Surface Area) - Substituting the values, we have: 108 = [(s * h_base) / 2] + 60. - Simplifying the equation, we get: s * h_base = 96. - Substituting the value of h_base from step 2, we have: s * [(s * sqrt(3)) / 2] = 96. - Simplifying the equation, we get: s^2 = (192 * 2) / sqrt(3). - Taking the square root of both sides, we get: s = sqrt((384 / sqrt(3))). - Substituting the value of s in the equation for l from step 3, we have: l = (40 / sqrt((384 / sqrt(3)))). - Finally, substituting the values of s and l in the equation for h from step 4, we can calculate the height of the pyramid.

Let's calculate the height of the pyramid using the given information.

Calculation:

1. Calculating the perimeter of the base: - Let's assume the side length of the base is s. - The perimeter of the base is given by: Perimeter = 3s.

2. Calculating the area of the base: - The area of a regular triangle can be calculated using the formula: Area = (s * h_base) / 2. - Since the base is equilateral, the height of the base (h_base) can be calculated using the formula: h_base = (s * sqrt(3)) / 2.

3. Calculating the slant height: - Using the formula for the lateral surface area, we can rearrange it to solve for the slant height (l): - Lateral Surface Area = (Perimeter of Base) * (Slant Height) / 2 - Substituting the values, we have: 60 = (3s * l) / 2. - Solving for l, we get: l = (40 / s).

4. Calculating the height of the pyramid: - Using the formula for the total surface area, we can rearrange it to solve for the height (h): - Total Surface Area = (Area of Base) + (Lateral Surface Area) - Substituting the values, we have: 108 = [(s * h_base) / 2] + 60. - Simplifying the equation, we get: s * h_base = 96. - Substituting the value of h_base from step 2, we have: s * [(s * sqrt(3)) / 2] = 96. - Simplifying the equation, we get: s^2 = (192 * 2) / sqrt(3). - Taking the square root of both sides, we get: s = sqrt((384 / sqrt(3))). - Substituting the value of s in the equation for l from step 3, we have: l = (40 / sqrt((384 / sqrt(3)))). - Finally, substituting the values of s and l in the equation for h from step 4, we can calculate the height of the pyramid.

Let's calculate the height of the pyramid using the given information.

Calculation:

1. Calculating the perimeter of the base: - Let's assume the side length of the base is s. - The perimeter of the base is given by: Perimeter = 3s.

2. Calculating the area of the base: - The area of a regular triangle can be calculated using the formula: Area = (s * h_base) / 2. - Since the base is equilateral, the height of the base (h_base) can be calculated using the formula: h_base = (s * sqrt(3)) / 2.

3. Calculating the slant height: - Using the formula for the lateral surface area, we can rearrange it to solve for the slant height (l): - Lateral Surface Area = (Perimeter of Base) * (Slant Height) / 2 - Substituting the values, we have: 60 = (3s * l) / 2. - Solving for l, we get: l = (40 / s).

4. Calculating the height of the pyramid: - Using the formula for the total surface area, we can rearrange it to solve for the height (h): - Total Surface Area = (Area of Base) + (Lateral Surface Area) - Substituting the values, we have: 108 = [(s * h_base) / 2] + 60. - Simplifying the equation, we get: s * h_base = 96. - Substituting the value of h_base from step 2, we have: s * [(s * sqrt(3)) / 2] = 96. - Simplifying the equation, we get: s^2 = (192 * 2) / sqrt(3). - Taking the square root of both sides, we get: s = sqrt((384 / sqrt(3))). - Substituting the value of s in the equation for l from step 3, we have: l = (40 / sqrt((384 / sqrt(3)))). - Finally, substituting the values of s and **

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос