
Вопрос задан 09.05.2019 в 16:52.
Предмет Геометрия.
Спрашивает Боброва София.
В прямоугольном параллелепипеде ABCDA1B1C1D1 известны ребра AB=6, AD=4, AA1=10. Точка F принадлежит
ребру BB1 и делит его в отношении 2:3 считая от вершины В. Найдите площадь сечения этого параллелепипеда плоскостью, проходящей через точки A, F и C1

Ответы на вопрос

Отвечает Александрова Анна.
Проведем прямые через точки А и F в плоскости АВВ1, через F и С1 в плоскости ВСС1. Очевидно еще одна вершина cечением лежит на ребре DD1. АС это проекция диагонали АС1 сечения. Середина АС точка К это проекция середины АС1 точки Е. Проводим прямую FЕ - она пересекает DD1 в точке P. Отрезки АP и PС1 замыкают сечение - четырехугольник АPС1F.
Этот четырехугольник - параллелограмм, т к линии пересечения с параллельными плоскостями параллельны.
Площадь параллелограмма найдем по формуле
В треугольнике AFB: FB=2/5 BB1=2/5 *10=4, АВ=4 по условию, значит треугольник AFB прямоугольный, равнобедренный, тогда AF= 4√2;
Треугольники AFB и C1PD1 равны, FB=PD1=4, PD=10-4=6.
В треугольнике APD: PD=6, АD=6 по условию, значит треугольник APD прямоугольный, равнобедренный, тогда AP= 6√2;
В прямоугольном треугольнике PNF: FN параллельна DB и равна [
tex] \sqrt{36+16}= \sqrt{52} [/tex], PN=2,
По теореме косинусов

Угол
, 

Этот четырехугольник - параллелограмм, т к линии пересечения с параллельными плоскостями параллельны.
Площадь параллелограмма найдем по формуле
В треугольнике AFB: FB=2/5 BB1=2/5 *10=4, АВ=4 по условию, значит треугольник AFB прямоугольный, равнобедренный, тогда AF= 4√2;
Треугольники AFB и C1PD1 равны, FB=PD1=4, PD=10-4=6.
В треугольнике APD: PD=6, АD=6 по условию, значит треугольник APD прямоугольный, равнобедренный, тогда AP= 6√2;
В прямоугольном треугольнике PNF: FN параллельна DB и равна [
tex] \sqrt{36+16}= \sqrt{52} [/tex], PN=2,
По теореме косинусов
Угол



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для решения данной задачи нам понадобится использовать свойства прямоугольного параллелепипеда. Давайте разберемся по шагам:
Шаг 1: Известны ребра параллелепипеда AB = 6, AD = 4, AA1 = 10.
Шаг 2: Точка F принадлежит ребру BB1 и делит его в отношении 2:3, считая от вершины B. Это означ


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili