
в правильной четырехугольной пирамиде Sabcd высота SO равна 13, диагональ основания BD равна
8.Точки К и М -середины ребер CD и BC соответственно.Найдите тангенс угла между плоскостью SMK и плоскостью основания ABC

Ответы на вопрос

Нарисуем пирамиду, проведем в ней сечение МSK.
МК - средняя линия треугольника CDB, параллельна DB и равна ее половине.
Диагональ АС квадрата АВСD равна диагонали DB
ОР - четверть этой диагонали и равна 8:4=2 (из треугольника CDB, в котором высота делится отрезком МК пополам).
SР- высота, биссектриса и медиана треугольного сечения МSK.
Небоходимо найти tg ∠ SPo, под которым сечение пересекается с плоскостью пирамиды.
Нарисуем отдельно треугольник PSo.
tg ∠ SPo=SP:oP=13:2=6,5



Task: Find the tangent of the angle between the plane SMK and the plane of the base ABC in a right quadrilateral pyramid SABCD.
To find the tangent of the angle between the plane SMK and the plane of the base ABC, we need to gather information about the given pyramid SABCD.
Given information: - Height of the pyramid SO = 13 - Diagonal of the base BD = 8 - Points K and M are the midpoints of the edges CD and BC, respectively.
To find the tangent of the angle between the plane SMK and the plane of the base ABC, we can use the concept of similar triangles.
Let's analyze the given information and solve the problem step by step.
Step 1: Analyzing the Pyramid SABCD
We have a right quadrilateral pyramid SABCD, where: - S is the apex of the pyramid. - ABCD is the base of the pyramid, forming a quadrilateral. - SO is the height of the pyramid, with a length of 13. - BD is the diagonal of the base, with a length of 8. - K and M are the midpoints of the edges CD and BC, respectively.
Step 2: Finding the Length of the Diagonal AC
To find the length of the diagonal AC, we can use the Pythagorean theorem. Since ABCD is a quadrilateral, we can divide it into two triangles, ABC and ACD.
Using the Pythagorean theorem in triangle ABC, we have: AC^2 = AB^2 + BC^2
Using the Pythagorean theorem in triangle ACD, we have: AC^2 = AD^2 + CD^2
Since AD = AB (both are sides of the base), we can equate the two equations: AB^2 + BC^2 = AD^2 + CD^2
Since AB = CD (opposite sides of a quadrilateral are equal), we can simplify the equation to: AB^2 + BC^2 = AD^2 + AB^2
Simplifying further, we get: BC^2 = AD^2
Since AD = AB, we can substitute AB for AD: BC^2 = AB^2
Taking the square root of both sides, we get: BC = AB
Therefore, the length of the diagonal AC is equal to the length of the base AB.
Step 3: Finding the Tangent of the Angle between the Planes SMK and ABC
To find the tangent of the angle between the planes SMK and ABC, we need to find the lengths of the sides SM, SK, and MK.
Since K and M are the midpoints of the edges CD and BC, respectively, we can use the midpoint formula to find their coordinates.
Let's assume the coordinates of point C are (x1, y1, z1) and the coordinates of point D are (x2, y2, z2).
Using the midpoint formula, the coordinates of point K are: xK = (x1 + x2) / 2 yK = (y1 + y2) / 2 zK = (z1 + z2) / 2
Similarly, assuming the coordinates of point B are (x3, y3, z3) and the coordinates of point C are (x1, y1, z1), the coordinates of point M are: xM = (x3 + x1) / 2 yM = (y3 + y1) / 2 zM = (z3 + z1) / 2
Now, we can find the lengths of the sides SM, SK, and MK using the distance formula.
The distance formula between two points (x1, y1, z1) and (x2, y2, z2) is given by: d = sqrt((x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2)
Using the distance formula, we can find the lengths of the sides SM, SK, and MK.
Step 4: Calculating the Tangent of the Angle
Now that we have the lengths of the sides SM, SK, and MK, we can calculate the tangent of the angle between the planes SMK and ABC.
The tangent of an angle can be calculated using the formula: tangent(angle) = opposite / adjacent
In this case, the opposite side is SM and the adjacent side is MK.
Therefore, the tangent of the angle between the planes SMK and ABC is given by: tangent(angle) = SM / MK
Substituting the lengths of the sides, we can calculate the tangent of the angle.
Note: Since the exact coordinates of the points and the lengths of the sides are not provided, we cannot provide a numerical value for the tangent of the angle. However, the above steps outline the process to find the tangent of the angle between the planes SMK and ABC in the given pyramid SABCD.
Please let me know if you need any further clarification or assistance.


Топ вопросов за вчера в категории Геометрия








Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili