
Вопрос задан 12.05.2018 в 07:48.
Предмет Геометрия.
Спрашивает Беков Абдурахман.
Периметр прямоугольника равен 60см. Каким должнны быть его стороны, чтобы площадь прямоугольника
была наибольшей? Найдите эту площадь.

Ответы на вопрос

Отвечает Кошелев Максим.
Пусть х - одна из сторон пр-ка, тогда (60/2) - х = 30 - х - другая сторона. Считаем площадь:
S = x(30-x) = 30x - x²
Графиком этой функции является парабола, направленная ветвями вниз. Наибольшее значение она принимает в вершине. Координата х вершины:
x = -b/(2a) = (-30)/(-2) = 15
Таким образом стороны прямоугольника равны 15 см, то есть это квадрат.
Мы доказали, что для заданного периметра пр-ка самую большую плошадь имеет КВАДРАТ. Его площадь: S = 15² = 225 см²
Ответ: по 15 см; 225 см².


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili