Вопрос задан 09.05.2018 в 21:29. Предмет Геометрия. Спрашивает Головченко Ваня.

Найдите площадь фигуры, ограниченной дугой окружности и стягивающей ее хордой, если длина хорды

равна 2 см, а диаметр окружности равен 4 см
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Зориков Ваня.

D=4 => R=2

Если соединить концы хорды с центром окружности, то получится равносторонний треугольник, так как все стороны равны 2

Площадь  фигуры, ограниченной дугой окружности и стягивающей ее хордой

равна площади сектора минус площадь треугольника

Найдем площадь сектора

  S=(pi*R^2/360°)*A°,

ГДЕ А°- угол треугольника или угол сектора

  S=(pi*2^2/360)*60=4*pi*/6=2,09

Площадь равностороннего треугольника равна

  S=(sqrt(3)/4)*a^2

 S=(sqrt(3)/4)*4=sqrt(3)=1,73

 

То есть наша площадь равна

   S=2,09-1,73=0,36

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос