Вопрос задан 02.04.2019 в 01:21. Предмет Геометрия. Спрашивает Свинтуковская Юля.

В треугольнике известны стороны b=35 и c=14, биссектриса угла A равна 12. Найти площадь

треугольника (235,2).
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ребик Павел.
Воспользуемся формулой площади тр-ка:S = (1/2)*ab*sinαСуммарная площадь 2-х малых тр-ов (на которые разбила биссектриса) равна площади исходного:(1/2)*14*12*sin(α/2)  +  (1/2)*35*12*sin(α/2)  =  (1/2)*35*14*sinαРешим полученное тригонометрическое уравнение:sin(α/2)(35*28*cos(α/2) - 49*12) = 0cos(α/2) = (49*12)/(35*28) = 3/5Тогда: sin(α/2) = корень(1 - (9/25)) = 4/5sinα = 2*(3/5)*(4/5) = 24/25Площадь тр-ка:S = (1/2)*35*14*(24/25) = 235,2Ответ: 235,2 см^2. 
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос