
Вопрос задан 06.05.2018 в 18:40.
Предмет Геометрия.
Спрашивает Поталай Ника.
Через вершину В квадрата ABCD проведена прямая BF, перпендикулярная к его плоскости. Найдите
расстояния от точки F до прямых, содержащих стороны и диагонали квадрата, если BF = 8 дм, АВ = 4 дм.

Ответы на вопрос

Отвечает Лещишин Иван.
См. рисунок в приложении
наклонная FA⊥ AD , так как её проекция ВА⊥AD
наклонная FO⊥AC , так как её проекция ВО ⊥ AC ( BD⊥AC- диагонали квадрата взаимно перпендикулярны)
По теореме Пифагора диагональ квадрата АС=√(4²+4²)=4√2
Диагонали квадрата в точке пересечения делятся пополам
АО=ОС=ВО=ОD=2√2
По теореме Пифагора из Δ AFB
AF²=AB²+FB²=4²+8²=16+64=80
AF=√80=4√5
Аналогично расстояние FC до стороны CD равно 4√5
По теореме Пифагора из Δ FBO
FO²=AO²+FB²=(2√2)²+8²=8+64=72
FO=√72=6√2
Расстояние до стороны АВ; ВС и диагонали BD равно FB=8



Топ вопросов за вчера в категории Геометрия

Геометрия 61

Геометрия 108

Геометрия 17

Геометрия 10

Геометрия 34

Геометрия 75

Геометрия 12

Геометрия 13
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili