Вопрос задан 11.02.2019 в 05:53. Предмет Геометрия. Спрашивает Рыженкова Эвелина.

Диаметр шара разделен на три части, которые относятся как 2:1:3. Через точки деления проведены

плоскости, перпендикулярные диаметру. Вычислите объем получившегося шарового слоя если радиус шара равен R.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Высоцкая Александра.
Есть три отрезка диаметра, значит имеем две точки деления. Сумма первых двух отрезков относится к третьему как 3:3, значит вторая точка делит диаметр пополам, а первая точка делит радиус в отношении 2:1.
Чтобы получить объём шарового слоя нужно от половины объёма шара вычесть объём шарового сегмента, определённого хордой АВ как диаметром сечения.
Объём половины шара: Vп=V/2=4πR³/6=2πR³/3

Объём шарового сегмента: Vc=πh²(R-h/3), где h - высота сегмента. h=СК. СК:СО=2:1, КО=R ⇒ CK=2R/3=h.
Vc=π·4R²(R-2R/9)/9=4R³((9-2)/9)/9=28R³/81.

Объём шарового слоя: Vслоя=Vп-Vc=2πR³/3-28πR³/81=26πR³/81 - это ответ.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос