Вопрос задан 17.01.2019 в 09:41.
Предмет Геометрия.
Спрашивает Анна Бушмельова.
Основания трапеции равна 12 см и 16 см.Тогда длина отрезка,являющегося частью средней линии
трапеции и лежащего между её диогоналями,будет равна???Ответы на вопрос
Отвечает Кошелева Виолетта.
Трапеция ABCD, AD II BC; AD > BC (то есть AD = 16; BC = 12)
Средняя линяя равна (12 + 16)/2 = 14. Отрезок средней линии между диагональю АС и боковой стороной АВ равен половине малого основания ВС (то есть 6) - это средняя линяя в треугольнике АВС. Аналогично, отрезок средней линии между диагональю BD и боковай стороной CD тоже равен половине ВС (тоже 6) - это средняя линяя треугольника BCD. Поэтому искомый отрезок средней линии, заключенный между диагоналями, равен 14 - 2*6 = 2.
В общем случае, если основания a > b, то этот отрезок равен (a - b)/2
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
