Вопрос задан 14.01.2019 в 14:52. Предмет Геометрия. Спрашивает Михайлов Александр.

Найдите площадь поверхности шестиугольной призмы, в основе которой лежит правильный шестиугольник с

периметром 12 см, а каждая боковая грань ее-квадрат.Буду признательна за ответ)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Цепляева Дарья.

Раз периметр основания правильного шестиугольника 12 см, одна его сторона равна

12:6=2 см.

А поскольку каждая грань призмы - квадрат, то призма прямая.

Граней у этой призмы 8 - 6 боковых и 2 грани - основания. 

S боковой поверхности вычислить просто, она равна сумме площадей 6 квадратов со стороной 2 см. 

S боковая= 6·2²=24 см²

К этой площади следует прибавить площадь оснований, т.е. площадь двух шестиугольников. 

Чтобы вычислить площадь основания призмы,   его -основание- разобьем на равные правильные треугольники, которых в нем 6. Площадь правильного шестиугольника будет равна высоте правильных треугольников, из которых он состоит, на его полупериметр.

Эту высоту находят по формуле h=(а√3):2

h=(2√3):2=√3

Периметр оснований дан в условии задачи, полупериметр =12:2=6 см

Sоснования=6·√3 см²

S всей поверхности  призмы=2·6√3+24 см²=12( √3+2) см²

 

 

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос