Вопрос задан 14.01.2019 в 05:30. Предмет Геометрия. Спрашивает Сатышев Кирилл.

В трапеции abcd с основаниями ad и bc диагонали пересекаются в точке М а)докажите,что треугольники

BMC и DMA подобны.б)найдите площадь треугольника треугольника DMA,если AM:MC=3:2,а площадь треугольника BMC равна 8см^2
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Хомин Вова.
∠ВСМ=∠MAD как внутренние накрест лежащие при параллельных прямых ВС и AD и секущей АС
∠СВМ=∠MDА как внутренние накрест лежащие при параллельных прямых ВС и AD и секущей BDтреугольники BMC и DMA подобны по двум углам
Площади подобных треугольников относятся как квадраты сходственных сторон

S (Δ AMD):  S (Δ BMC)   = (AM)² : (MC)²=(AM:MC)²

S (Δ AMD) : 8 = (9): (4)
S (Δ AMD)= 18 кв см
 
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос