Вопрос задан 02.01.2019 в 14:38.
Предмет Геометрия.
Спрашивает Казбеков Даниил.
В прямоугольном треугольнике один из катетов равен6, а угол, лежащий напротив него, равен 30°
.Найдите площадь треугольника . Помогите пожалуйста решить !!Ответы на вопрос
        Отвечает Светлов Вадим.
                
     АВ = 2АС = 2 · 6 = 12 так как катет, лежащий напротив угла в 30°, равен половине гипотенузы.
По теореме Пифагора:
АВ² = АС² + ВС²
ВС² = АВ² - АС²
ВС² = 144 - 36 = 108
ВС = √108 = 6√3
Площадь прямоугольного треугольника равна половине произведения катетов:
Sabc = BC · AC / 2 = 6√3 · 6 / 2 = 18√3
                                        По теореме Пифагора:
АВ² = АС² + ВС²
ВС² = АВ² - АС²
ВС² = 144 - 36 = 108
ВС = √108 = 6√3
Площадь прямоугольного треугольника равна половине произведения катетов:
Sabc = BC · AC / 2 = 6√3 · 6 / 2 = 18√3
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
	- 
			
Математика
 - 
			
Литература
 - 
			
Алгебра
 - 
			
Русский язык
 - 
			
Геометрия
 - 
			
Английский язык
 - 
			
Химия
 - 
			
Физика
 - 
			
Биология
 - 
			
Другие предметы
 - 
			
История
 - 
			
Обществознание
 - 
			
Окружающий мир
 - 
			
География
 - 
			
Українська мова
 - 
			
Информатика
 - 
			
Українська література
 - 
			
Қазақ тiлi
 - 
			
Экономика
 - 
			
Музыка
 - 
			
Право
 - 
			
Беларуская мова
 - 
			
Французский язык
 - 
			
Немецкий язык
 - 
			
МХК
 - 
			
ОБЖ
 - 
			
Психология
 - 
			
Физкультура и спорт
 - 
			
Астрономия
 - 
			
Кыргыз тили
 - 
			
Оʻzbek tili
 
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			