
Вопрос задан 26.11.2018 в 16:21.
Предмет Геометрия.
Спрашивает Барзенкова Ксения.
Основи рівнобічної трапеції діагоналі якої перетинаються під прямим кутом дорівнюють Nсм і N+2см.
Знайдіть висоту трапеції.N=10

Ответы на вопрос

Отвечает Криворучко Ирочка.
Решим методом площадей. Площадь трапеции с одной стороны равна произведению полусуммы оснований на высоту трапеции, а с другой половине произведения диагоналей трапеции на синус ула между ними.
1) высоту трапеции примем за h. По первой формуле: S=0,5(10+12)h=11h
2) диагонали равнобокой трапеции равны, а синус прямого угла равен 1. По второй формуле: S=0,5*d1*d2=0,5*(d^2)/ Выразим d^2 по теореме Пифагора из прямоугольного тр-ка, образованного высотой h, диагональю d и частью нижнего основания, длина которой равна 10+(12-10)/2=10+1=11 (см). Итак, d^2=h^2+11^2. Тогда S=0,5*d^2=0,5(h^2+121).
3) Приравняем: 11h=0,5(h^2+121); => 22h=h^2+121; => h^2-22h+121=0; => (h-11)^2=0;
=> h-11=0; => h=11 (см)


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili