
Стороны параллелограмма 4см и 5 см Острый угол 60°. Найти его диагонали.


Ответы на вопрос

Решение смотри во вложении




Given Information:
We are given that the sides of the parallelogram are 4 cm and 5 cm, and one of the acute angles is 60°. We need to find the diagonals of the parallelogram.Solution:
To find the diagonals of the parallelogram, we can use the properties of a parallelogram. In a parallelogram, opposite sides are equal in length, and opposite angles are equal in measure.Since we know the sides of the parallelogram are 4 cm and 5 cm, we can conclude that the opposite sides are also 4 cm and 5 cm.
Let's label the sides of the parallelogram as follows: - Side AB = 4 cm - Side BC = 5 cm
Since opposite sides of a parallelogram are equal, we can conclude that side CD is also 4 cm and side AD is also 5 cm.
Now, let's find the diagonals of the parallelogram.
Diagonal AC:
To find diagonal AC, we can use the cosine rule. The cosine rule states that in a triangle with sides a, b, and c, and angle C opposite side c, the following equation holds:c^2 = a^2 + b^2 - 2ab * cos(C)
In our case, we have a triangle with sides AC, AB, and BC, and angle ABC opposite side BC.
Using the cosine rule, we can find the length of diagonal AC:
AC^2 = AB^2 + BC^2 - 2 * AB * BC * cos(ABC)
Substituting the known values:
AC^2 = 4^2 + 5^2 - 2 * 4 * 5 * cos(60°)
Simplifying the equation:
AC^2 = 16 + 25 - 40 * cos(60°)
AC^2 = 41 - 40 * 0.5
AC^2 = 41 - 20
AC^2 = 21
Taking the square root of both sides:
AC = √21
So, the length of diagonal AC is approximately 4.58 cm.
Diagonal BD:
To find diagonal BD, we can use the Pythagorean theorem. The Pythagorean theorem states that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.In our case, we have a right triangle with sides BD, AB, and AD.
Using the Pythagorean theorem, we can find the length of diagonal BD:
BD^2 = AB^2 + AD^2
Substituting the known values:
BD^2 = 4^2 + 5^2
BD^2 = 16 + 25
BD^2 = 41
Taking the square root of both sides:
BD = √41
So, the length of diagonal BD is approximately 6.40 cm.
Summary:
The diagonals of the parallelogram are approximately: - Diagonal AC: 4.58 cm - Diagonal BD: 6.40 cmPlease note that the values are approximate due to rounding.
Let me know if there's anything else I can help you with!


Похожие вопросы








Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili