Вопрос задан 15.11.2023 в 12:37. Предмет Геометрия. Спрашивает Кочергин Максим.

знайти площу ортогональної проєкції прямокутної трапеції abcd, a=90°, bc II ad, якщо bc=8см,

ad=18см, d=45°, а кут між площиною заданої трапеції та площиною проєкції дорівнює 60°​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Barbq-Junior Андрюха.

Ответ:

см фото

Объяснение:


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для розв'язку даної задачі ми можемо скористатися формулою для площі паралелограму, оскільки проекція прямокутної трапеції на площину є паралелограмом.

Запишемо дані: bc = 8 см (бічна сторона трапеції) ad = 18 см (бічна сторона трапеції) d = 45° (один з кутів трапеції) A = 90° (прямий кут) θ = 60° (кут між площиною трапеції та площиною проекції)

Спочатку знайдемо перпендикуляр, опущений з верхньої вершини трапеції.

Оскільки кут mBAD = 180° - A - d, то mBAD = 180° - 90° - 45° = 45°.

Далі, ми побудуємо пряму, яка є проекцією bC на площину заданої трапеції AD.

Оскільки C⁻А⁻ = 180° - mBAD = 180° - 45° = 135°, тоді кут САС⁻ = 180° - A⁻ - d = 180° - 135° - 45° = 0°.

Це означає, що САС⁻ - це пряма вздовжє площини трапеції AD.

Далі, розглянемо трикутник СС⁻А. Знайдемо довжину відрізка С⁻А.

Застосуємо теорему синусів до трикутника СС⁻А: sin (С⁻АС) / 8 = sin (C⁻АС) / С⁻А

sin (135°) / 8 = sin (0°) / С⁻А

С⁻А = 8 * sin (0°) / sin (135°) = 0 / (sqrt(2)/2) = 0

Це означає, що С⁻А = 0.

Отже, площа проекції прямокутної трапеції дорівнює 0.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос