Вопрос задан 05.11.2023 в 05:19. Предмет Геометрия. Спрашивает Лешків Юра.

Как найти гипотенузу прямоугольного треугольника, зная только его площадь и один угол, равный 30-ти

градусам?? Какой алгоритм? 80 баллов :з!
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Федорец Антон.

Ответ:

S =  \frac{ab}{2}  \\ ab = 2S

 \sin(30^{\circ})  =  \frac{b}{c}  \\ b =  \frac{1}{2} c \\  \\  \cos(30^{\circ})  =  \frac{a}{c}  \\ a =  \frac{ \sqrt{3} }{2} c

Подставим выраженные стороны в формулу площади

ab = 2S\\  \frac{c}{2}  \times  \frac{ \sqrt{3} }{2} c = 2S \\  \sqrt{3}  {c}^{2}  = 8S \\ c =  \sqrt{ \frac{8S}{ \sqrt{3} } }

Подставив значения, найдем гипотенузу.


0 0
Отвечает Княжев Денис.

Объяснение:

S=1/2×a×b

2S=ab

sin30=a/c

a=c×sin30=1/2×c

cos30=b/c

b=c×корень3/2

2s=1/2c×(корень3/2)с

С^2=8S/корень3

С=корень(8S/корень3)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения гипотенузы прямоугольного треугольника, зная только его площадь и один угол, можно использовать следующий алгоритм:

1. Известно, что площадь прямоугольного треугольника равна половине произведения длин его катетов (S = (1/2) * a * b), где S - площадь треугольника, a и b - длины катетов. 2. Подставим в формулу значения известных параметров. Пусть один из катетов равен x (так как мы не знаем их конкретные значения), тогда получаем уравнение: S = (1/2) * x * b. 3. Также известно, что синус угла равен отношению противолежащего катета к гипотенузе (sin30 = a / c), где a - противолежащий катет, c - гипотенуза. 4. Подставим в формулу значения известных параметров. Зная значение угла 30 градусов, получаем уравнение: sin30 = x / c. 5. Решим полученную систему уравнений для нахождения значений x и c. - Из первого уравнения выражаем b: b = (2 * S) / x. - Подставляем b во второе уравнение: sin30 = x / c. - Получаем уравнение: sin30 = x / c = x / √(x^2 + ((2 * S) / x)^2). 6. Решим это уравнение относительно c, найдя квадратный корень из обоих частей уравнения: c = √(x^2 + ((2 * S) / x)^2). 7. Подставим значение x в эту формулу и выразим c. 8. Таким образом, найденное значение c будет являться гипотенузой прямоугольного треугольника. 9. Вычисляем значение c, анализируя предоставленную площадь и заданный угол.

Алгоритм получения гипотенузы прямоугольного треугольника, зная площадь и угол, равный 30 градусам, может осуществляться по вышеописанной последовательности шагов.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос