Вопрос задан 27.10.2023 в 12:57. Предмет Геометрия. Спрашивает Королёв Ваня.

Модуль вектора а=3 модуль вектора b=4, a*b=8, тогда косинус угла между векторами будет равно

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Пирог Лиза.
A · b=8
|a| = 3
|b| = 4
скалярным произведением векторов a и b будет скалярная величина, равная произведению модулей этих векторов умноженного на косинус угла между ними: a · b = |a| · |b| cos α

cos α=a · b/ |a| · |b|=8/3*4=8/12=2/3
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения косинуса угла между двумя векторами a и b, мы можем воспользоваться следующей формулой:

cos(θ) = (a · b) / (|a| * |b|),

где θ - угол между векторами, a · b - скалярное произведение векторов a и b, |a| - модуль (длина) вектора a, |b| - модуль (длина) вектора b.

У нас даны следующие значения: |a| = 3, |b| = 4, a · b = 8.

Подставим эти значения в формулу:

cos(θ) = (8) / (3 * 4) = 8 / 12 = 2/3.

Теперь, чтобы найти угол θ, можно воспользоваться обратной функцией косинуса (арккосинус):

θ = arccos(2/3).

Вычислим значение arccos(2/3) в радианах:

θ ≈ 0.8411 радиан.

Если вы хотите узнать значение угла в градусах, то используйте следующее соотношение: 1 радиан ≈ 57.2958 градусов.

Таким образом, косинус угла между векторами a и b равен 2/3, или примерно 0.8411 радиан (или примерно 48.19 градусов).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос