Сума кутів опуклого n-кутника й одного з його зовнішніх кутів дорівнює 990 градусів. Знайдіть n
Ответы на вопрос
Сумма углов выпуклого n-угольника и одного из его внешних углов равен 990°. Найдите n.
Внешним углом выпуклого многоугольника при данной вершине называется угол, смежный внутреннему углу многоугольника при этой вершине. Сумма одного внутреннего и внешнего угла при нем равна развернутому углу, т.е. 180°. Тогда на долю остальных n' = (n-1) углов данного многоугольника приходится 990°-180°=810°. Найдем количество n' остальных углов. 810°:n'=180°(n'-2):n';, откуда n'=6. А с углом. который мы вычли, число углов (и, естественно, сторон) данного многоугольника равно 7.
Или: Формула суммы углов выпуклого n-угольника 180°(n-2). Сумма всех внешних углов многоугольника 360°. Предположим, что этот многоугольник правильный. Тогда величина внешнего угла 360°:n. Составим уравнение: 180°(n-2)+360°/n=990°. Сократим для удобства все члены уравнения на 90 и умножим их на n , после чего соберем все его члены по одну сторону и получим квадратное уравнение 2n²-15n+4=0. Корни этого уравнения ≈ 7,54 и ≈0,25. Число сторон многоугольника не бывает дробным. Пусть n=7. Тогда сумма внутренних углов семиугольника 180°•5=900°, а добавленный к ней внешний угол 990°-900°=90°. Смежный с ним внутренний может быть равен только 90°. Данный многоугольник не является правильным, его углы могут иметь разную величину, но их сумма будет 900°. ( Например, 6 углов будут по (900°-90°):6=135°, а седьмой равен 90°, а их сумма 6•135°+90°=900°). Ответ: n=7
Судя по сумме внутренних углов многоугольника из условия это не треугольник, не четырехугольник и не дельтоид. Тогда верны следующие рассуждения.
Сумма внутренних углов выпуклого многоугольника равна 180*(n-2), где n - число углов многоугольника.
Величина внешнего угла данного выпуклого многоугольника не может быть больше 90°. Исходя из условия составляем неравенство:
180*(n-2)≤990-90;
n-2≤5
n≤7;
при n=6 сумма углов равна 180*4=720° и внешний угол равен 990-720=270, что противоречит правилу. Следовательно число углов равно 7.
Или другой способ: максимальное количество углов многоугольника по данным задачи составляет 2+990/180=7,5 (при величине внешнего угла стремящегося к нулю). Следовательно ближайшее количество углов - 7.
Для розв'язання цього завдання треба використати властивості суми кутів у полігоні (n-1) * 180 градусів, де n - кількість кутів у полігоні.
В даному випадку ми маємо опуклий n-кутник та один з його зовнішніх кутів, що разом дають суму 990 градусів. З оголошення властивостей суми кутів у полігоні, ми можемо записати рівняння:
(n-2) * 180 + 180 = 990
Розкриваємо дужки:
(n-2) * 180 + 180 = 990 180n - 360 + 180 = 990
Спрощуємо:
180n - 180 = 990 180n = 990 + 180 180n = 1170
Ділимо обидві сторони на 180:
n = 1170 / 180 n = 6.5
Отже, значення n дорівнює 6.5. Зауважте, що n не може бути дробовим числом, оскільки це означає, що ми маємо половину кута. Тому, найближче ціле число до 6.5 є 7. Таким чином, кількість кутів у полігоні дорівнює 7.
Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
