Вопрос задан 24.07.2018 в 08:31. Предмет Геометрия. Спрашивает Тупиков Сергей.

дві сторони трикутника дорівнюють 6 і 10 а кут між ними 120 знайти периметр і площу

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лисицын Святослав.

Смотри решение во вложениях. Удачи !


0 0
Отвечает Чекрыгин Артём.

S=1/2a*b*sin120=1/2 *6*10*V3/2=15V3

c=V(a^2+b^2-2ab*cos120)=V(36+100-120*(-0,5))=V(136+60)=V196=14

P=a+b+c=6+10+14=30

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Задача

У нас есть треугольник, у которого две стороны равны 6 и 10, а угол между ними составляет 120 градусов. Нам нужно найти периметр и площадь этого треугольника.

Решение

Для решения этой задачи мы можем использовать законы синусов и косинусов. Давайте начнем с нахождения третьей стороны треугольника.

Нахождение третьей стороны

Мы можем использовать закон косинусов, чтобы найти третью сторону треугольника. Закон косинусов гласит:

c^2 = a^2 + b^2 - 2ab * cos(C)

Где: - c - третья сторона треугольника - a и b - известные стороны треугольника - C - угол между известными сторонами

Подставляя значения из нашей задачи, получаем:

c^2 = 6^2 + 10^2 - 2 * 6 * 10 * cos(120°)

Вычислив это выражение, мы найдем квадрат третьей стороны треугольника.

Нахождение периметра

Периметр треугольника равен сумме длин всех его сторон. В нашем случае, мы знаем длины двух сторон (6 и 10), и после нахождения третьей стороны, мы сможем найти периметр.

Нахождение площади

Для нахождения площади треугольника, мы можем использовать формулу Герона:

S = sqrt(s * (s - a) * (s - b) * (s - c))

Где: - S - площадь треугольника - s - полупериметр треугольника (s = (a + b + c) / 2) - a, b, c - длины сторон треугольника

Подставляя значения из нашей задачи, мы найдем площадь треугольника.

Результаты

После вычислений, мы получаем следующие результаты: - Длина третьей стороны треугольника: c ≈ 8.66 - Периметр треугольника: P ≈ 6 + 10 + 8.66 ≈ 24.66 - Площадь треугольника: S ≈ sqrt((6 + 10 + 8.66) * (6 + 10 - 8.66) * (6 - 10 + 8.66) * (-6 + 10 + 8.66)) ≈ 23.38

Итак, периметр треугольника составляет примерно 24.66, а площадь треугольника составляет примерно 23.38.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос