
Дано:AB=BC; угол A =60°;CD-биссектриса угла BCE. Доказать:DC||AB.


Ответы на вопрос

А можно чертеж? я просто не понимаю, от куда E? это секущая?



Given Information:
We are given that AB = BC and angle A = 60°. CD is the bisector of angle BCE.To Prove:
We need to prove that DC || AB.Proof:
To prove that DC || AB, we can use the angle bisector theorem and the fact that AB = BC.According to the angle bisector theorem, in triangle ABC, we have:
AC/BC = AD/BD
Since AB = BC, we can substitute BC with AB in the equation:
AC/AB = AD/BD
Since angle A = 60°, angle B = 180° - angle A - angle C = 180° - 60° - angle C = 120° - angle C.
Now, let's consider triangle ACD and triangle BCD. We have:
angle ACD = angle BCD (since CD is the bisector of angle BCE) angle ADC = angle BDC (vertical angles)
Using the angle-angle similarity criterion, we can conclude that triangle ACD and triangle BCD are similar.
Since they are similar triangles, the corresponding sides are proportional. Therefore, we have:
AC/AD = BC/BD
Substituting BC with AB, we get:
AC/AD = AB/BD
Since AB = BC, we can substitute BC with AB in the equation:
AC/AD = AB/BD
Since AB = BC, we can simplify the equation further:
AC/AD = AB/BD = 1
This implies that AC = AD and AB = BD.
Now, let's consider triangle ABD. We have:
AB = BD (proved above) angle ABD = angle ADB (since AD = BD)
Using the side-angle-side (SAS) congruence criterion, we can conclude that triangle ABD and triangle ADB are congruent.
Since they are congruent triangles, the corresponding angles are equal. Therefore, we have:
angle ABD = angle ADB
Since angle ABD = angle ADB, we can conclude that angle ABD is an isosceles angle.
In an isosceles triangle, the base angles are equal. Therefore, we have:
angle ABD = angle A
Since angle ABD = angle A, we can conclude that angle ABD is also 60°.
Now, let's consider triangle BCD. We have:
angle BCD = angle BDC (since CD is the bisector of angle BCE) angle BDC = angle ABD (proved above)
Using the angle-angle-angle (AAA) similarity criterion, we can conclude that triangle BCD and triangle ABD are similar.
Since they are similar triangles, the corresponding sides are proportional. Therefore, we have:
BC/BD = AB/AD
Since AB = BC, we can substitute BC with AB in the equation:
AB/BD = AB/AD
Since AB = BC, we can simplify the equation further:
AB/BD = AB/AD = 1
This implies that AB = BD and AB = AD.
Since AB = BD and AB = AD, we can conclude that triangle ABD is an isosceles triangle.
In an isosceles triangle, the base angles are equal. Therefore, we have:
angle ABD = angle ADB
Since angle ABD = angle ADB, we can conclude that angle ABD is also 60°.
Now, let's consider triangle ACD. We have:
angle ACD = angle BCD (proved above) angle ACD = angle ABD (proved above)
Using the angle-angle-angle (AAA) similarity criterion, we can conclude that triangle ACD and triangle ABD are similar.
Since they are similar triangles, the corresponding sides are proportional. Therefore, we have:


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili