Вопрос задан 26.09.2023 в 04:34. Предмет Геометрия. Спрашивает Nazarenko Maria.

Периметр паралелограма дорівнює 80 см. Знайдіть його сторони якщо вони відносяться як 3:7.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Алиев Эмиль.

Ответ:

12 и 28 - стороны параллелограмма.

Объяснение:

Пусть 3х см - короткая сторона параллелограмма, а 7х - длинная сторона параллелограмма. Тогда составим уравнение для вычисления периметра параллелограмма

2*(3х+7х)=80

2*10х=80

20х=80

х=80:20

х=4

Значит короткая сторона параллелограмма равна 3х=3*4=12 см.

Длинная сторона параллелограмма равна 7х=7*4=28 см.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Нехай одна зі сторін паралелограма має довжину 3x, а інша - 7x, де x - це загальний множник.

Периметр паралелограма обчислюється як сума всіх його сторін: P=2(a+b),P = 2(a + b), де a і b - сторони паралелограма.

Відомо, що периметр паралелограма дорівнює 80 см, тому: 80=2(3x+7x).80 = 2(3x + 7x).

Розгортаємо дужки та спрощуємо вираз: 80=210x=20x.80 = 2 \cdot 10x = 20x.

Тепер знайдемо значення x: x=8020=4.x = \frac{80}{20} = 4.

Тепер ми можемо знайти довжину кожної сторони паралелограма: Перша сторона (3x)=34=12 см,\text{Перша сторона (3x)} = 3 \cdot 4 = 12 \text{ см}, Друга сторона (7x)=74=28 см.\text{Друга сторона (7x)} = 7 \cdot 4 = 28 \text{ см}.

Отже, сторони паралелограма мають довжину 12 см та 28 см, і вони відносяться як 3:7.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос